4.6 Lagrange's Mean Value Theorem

4.6.1 Definition

If a function f(x),

- (1) Is continuous in the closed interval [a, b] and
- (2) Is differentiable in the open interval (a, b)

Then there is at least one value $c \in (a,b)$, such that; $f'(c) = \frac{f(b) - f(a)}{b-a}$

4.6.2 Analytical Interpretation

First form: Consider the function, $\phi(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$

Since, f(x) is continuous in [a, b]

 $\phi(x)$ is also continuous in [a,b]

since, f'(x) exists in (a, b) hence $\phi'(x)$ also exists in (a, b) and $\phi'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$ (i)

Clearly, $\phi(x)$ satisfies all the condition of Rolle's theorem

 \therefore There is at least one value of c of x between a and b such that $\phi'(c) = 0$ substituting x = c in (i) we get,

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 which proves the theorem.

Second form: If we write b = a + h then $a < c < b, c = a + \theta h$ where $0 < \theta < 1$

Thus, the mean value theorem can be stated as follows:

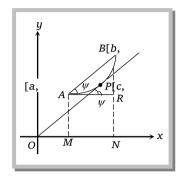
- If (i) f(x) is continuous in closed interval [a, a+h]
- (ii) f'(x) exists in the open interval (a, a+h) then there exists at least one number $\theta(0 < \theta < 1)$ Such that $f(a+h) = f(a) + hf'(a + \theta h)$.

4.6.3 Geometrical Interpretation

Let f(x) be a function defined on [a, b] and let APB be the curve represented by y = f(x). Then co-ordinates of A and B are (a, f(a)) and (b, f(b)) respectively. Suppose the chord AB makes an angle ψ with the axis of x. Then from the triangle ARB, we have

$$\tan \psi = \frac{BR}{AR} \implies \tan \psi = \frac{f(b) - f(a)}{b - a}$$

By Lagrange's Mean value theorem, we have, $f'(c) = \frac{f(b) - f(a)}{b - a}$: $\tan \psi = f'(c)$



 \Rightarrow slope of the chord AB = slope of the tangent at (c, f(c))

In the mean-value theorem $\frac{f(b)-f(a)}{b-a}=f'(c)$, if a=0, $b=\frac{1}{2}$ and f(x)=x(x-1)(x-2), the value of c is [MP PET 20] Example: 1

(a)
$$1 - \frac{\sqrt{15}}{6}$$

(b)
$$1 + \sqrt{15}$$

(b)
$$1+\sqrt{15}$$
 (c) $1-\frac{\sqrt{21}}{6}$

(d)
$$1 + \sqrt{21}$$

From mean value theorem $f'(c) = \frac{f(b) - f(a)}{b - a}$

$$a = 0, f(a) = 0 \implies b = \frac{1}{2}, f(b) = \frac{3}{8}$$

$$f'(x) = (x-1)(x-2) + x(x-2) + x(x-1)$$
,

$$f'(c) = (c-1)(c-2) + c(c-2) + c(c-1) = c^2 - 3c + 2 + c^2 - 2c + c^2 - c$$
, $f'(c) = 3c^2 - 6c + 2$

According to mean value theorem

$$\Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a} \Rightarrow 3c^2 - 6c + 2 = \frac{\left(\frac{3}{8}\right) - 0}{\left(\frac{1}{2}\right) - 0} = \frac{3}{4} \Rightarrow 3c^2 - 6c + \frac{5}{4} = 0$$

$$c = \frac{6 \pm \sqrt{36 - 15}}{2 \times 3} = \frac{6 \pm \sqrt{21}}{6} = 1 \pm \frac{\sqrt{21}}{6}$$
.

From mean value theorem $f(b) - f(a) = (b - a)f'(x_1), a < x_1 < b$ if $f(x) = \frac{1}{x}$ then x_1 Example: 2

(a)
$$\sqrt{ab}$$

(b)
$$\frac{2ab}{a+b}$$

(c)
$$\frac{a+b}{2}$$

(d)
$$\frac{b-a}{b+a}$$

 $f'(x_1) = \frac{-1}{x_1^2}$, $\therefore \frac{-1}{x_2^2} = \frac{\frac{1}{b} - \frac{1}{a}}{b - a} = -\frac{1}{ab} \Rightarrow x_1 = \sqrt{ab}$. Solution: (a)

The abscissae of the points of the curve $y = x^3$ in the interval [-2, 2], where the slope of the tangent Example: 3 can be obtained by mean value theorem for the interval [-2, 2] are

(a)
$$\pm \frac{2}{\sqrt{3}}$$

(b)
$$\pm \frac{\sqrt{3}}{2}$$

(c)
$$\pm \sqrt{3}$$

Given that equation of curve $y = x^3 = f(x)$

240 Application of Derivatives

So
$$f(2) = 8$$
 and $f(-2) = -8$

Now
$$f'(x) = 3x^2 \Rightarrow f'(x) = \frac{f(2) - f(-2)}{2 - (-2)} \Rightarrow \frac{8 - (-8)}{4} = 3x^2; \therefore x = \pm \frac{2}{\sqrt{3}}$$
.

Lagrange's Mean Value Theorem

Basic Level

If from mean value theorem, $f'(x_1) = \frac{f(b) - f(a)}{b - a}$, then 1. [MP PET 1999]

- (a) $a < x_1 \le b$
- (b) $a \le x_1 < b$
- (c) $a < x_1 < b$
- (d) $a \le x_1 \le b$
- For the function $x + \frac{1}{x}$, $x \in [1,3]$, the value of c for the mean value theorem is 2.

[MP PET 1997]

(a) 1

(b) $\sqrt{3}$

(c) 2

- (d) None of these
- For the function $f(x) = e^x$, a = 0, b = 1, the value of c in mean value theorem will be 3.

[DCE 2002]

- (a) $\log x$
- (b) $\log (e-1)$
- (c) o

(d) 1

Advance Level

- If the function $f(x) = x^3 6ax^2 + 5x$ satisfies the conditions of Lagrange's mean value theorem for the interval [1, 4. 2] and the tangent to the curve y = f(x) at $x = \frac{7}{4}$ is parallel to the chord that joins the points of intersection of the curve with the ordinates x = 1 and x = 2. Then the value of a is
 - (a) 35/16
- (b) 35/48

- (d) 5/16
- If $f(x) = \cos x, 0 \le x \le \frac{\pi}{2}$, then the real number 'c' of the mean value theorem is 5.

[MP PET 1994]

(a) $\frac{\pi}{6}$

(b) $\frac{\pi}{4}$

- (c) $\sin^{-1}\left(\frac{2}{\pi}\right)$ (d) $\cos^{-1}\left(\frac{2}{\pi}\right)$
- Let f(x) satisfy all the conditions of mean value theorem in [0, 2]. If f(0) = 0 and $|f'(x)| \le \frac{1}{2}$ for all x in [0, 2], 6. then
 - (a) $f(x) \le 2$

(b) $|f(x)| \le 1$

(c) f(x) = 2x

(d) f(x) = 3 for at least one x in [0, 2]

242 Application of Derivatives

- 7. The function $f(x) = (x-3)^2$ satisfies all the conditions of mean value theorem in [3, 4]. A point on $y = (x-3)^2$, where the tangent is parallel to the chord joining (3, 0) and (4, 1) is
 - (a) $\left(\frac{7}{2}, \frac{1}{2}\right)$
- (b) $\left(\frac{7}{2}, \frac{1}{4}\right)$
- (c) (1,4)

- (d) (4, 1)
- **8.** Let f(x) and g(x) are defined and differentiable for $x \ge x_0$ and $f(x_0) = g(x_0)$, f'(x) > g'(x) for $x > x_0$, then
 - (a) f(x) < g(x) for some $x > x_0$
 - (b) f(x) = g(x) for some $x > x_0$
 - (c) f(x) > g(x) for all $x > x_0$
 - (d) None of these
- **9.** Let *f* be differentiable for all *x*. If f(1) = -2 and $f'(x) \ge 2$ for all $x \in [1, 6]$ then
 - (a) f(6) < 8
- **(b)** $f(6) \ge 8$
- (c) $f(6) \ge 5$
- (d) $f(6) \le 5$
- **10.** The value of *c* in Lagrange's theorem for the function |x| in the interval [-1, 1] is
 - (a) o

(b) 1/2

(c) -1/2

(d) Non-existent in the

interval

Answer Sheet

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10
c	b	b	b	c	b	b	c	b	d

